UTC inventory for
Astronomical software

(plus time handling in software)

Rob Seaman
NOAO Science Data Management



What some said about Y2K

“We don't have any problems yet...
We'll deal with the problem in the
year 2000.”

- Vladislav Petrov
Russian Atomic Energy Ministry



Both like and unlike Y2K

* Urgency is artificial for UTC
* Cry wolf effect:

—Y2K was real, but seen after as non-event

—UTC issue is real, currently unfamiliar

* Leap seconds are a means to an end



Meanwhile in astronomy

* Entire astronomical software community had
Y2K remediation responsibilities, e.g.:

— NOAO had a telescope that tracked backwards
— IRAF had to be patched
— FITS standard had to be modified

— Observatory admin software had to be updated

* Cost estimates are costly



Planning for absent planning

* |f UTC is redefined, the leap second issue
will no longer be a hypothetical exercise

* The astronomical community would be
forced, at a much larger scale than Y2K,
to conduct a comprehensive (expensive)
inventory of its software, systems,
processes, metadata and documentation



Planning for absent planning

Afterward the functionality would be no better
than before, likely worse

Confusion injected throughout community
— and this is only the Y2K-like aspects

Algorithms would have to change to reflect the
different time scale

Archives would have to deal with both old and
new time scales indefinitely

New clocks and network infrastructure needed



What do civilians say about
UTC and civil timekeeping?



Internet commentator, Tom Scott

5 January 2014 Performing your UTC software inventory




Time zones versus leap seconds

e Extent of planning for the immediate impacts
of redefining UTC (that is, for astronomers)

— “Give them five years and they’ll figure it out”
* Long term planning:
— “Can’t predict what future timekeepers will do”

— But maybe the embargoed leap seconds can be

absorbed into the timezones and DST
(few countries observe DST)

* Google (and Amazon and others) have
implemented solutions



Time zone references

e Arthur David Olson (tz) database

— http://www.iana.org/time-zones

e Steve Allen’s tz-based leap second proposal

— http://futureofutc.org/2011/preprints/
45 AAS 11-681 Allen.pdf

* “One thing happens before another”

— http://research.microsoft.com/en-us/um/people/lamport/
pubs/pubs.html#time-clocks

5 January 2014 Performing your UTC software inventory 10



What are the use cases?

* |s duration really the
“killer” time app?

e Sl second is arguably a
frequency standard:

 Assumption that time
means one and only one
thing



Civil timekeeping requirements

* Southern time zones are important to
astronomers

— Logistics, data flow

 DST and time zones have very short notice
updates compared to leap seconds

— Both prior and retroactive use cases

— Intercalary changes will always be frequent
e Overlaid multiple time zones (scales) exist

— West Bank and Western China



Overly simple conceptual model

* |gnorance of roles of IAU, ITU, IERS, etc.

— “Universal Coordinated Time” vs “Astronomical Time”

* Everything doesn’t break with leap seconds
— only minor issues after two dozen leap seconds

— unlike Y2K (without remediation)
— but all clocks in Libya did break due to DST

* Unix timestamp is asserted to be a solution
— but advice is to accept spaghetti code

— while tz DB could be a pragmatic solution for leapsecs



Can a non-solution be a solution?

“That way lies madness”?

— |Is time more difficult than other software issues?

Exasperation is not justification for failing to
attempt to solve a problem

“Continuity is more important than accurate
time”?

— What does this even mean?



Even so...

 He does not argue to eliminate leap seconds,
time zones or daylight saving time

 Lists several specific things wrong with time
zone / DST system...but nothing specific about
Ieap seconds (multi-radix is descriptive)

— |s it because time zones / DST are artificial?

— Whereas leap seconds are a means to an end
modeling a physical aspect of the real world?



UTC inventory for
Astronomical software

For more details

http://futureofutc.orq/2011/preprints/AAS 11-677 Seaman.pdf




Y2K remediation

* |ssue was that two digit years had been
encoded into software

* Solutions included
— Recoding with four digits
— Introducing an explicit pivot
— Retiring software
— Replacing hardware

— Documentation and procedures



UTC versus Y2K

UTC is broader impact and less clear-cut

— astronomy software cares deeply about UTC

Systems (HW + SW + processes) assume
UTC == Universal Time (UT1), or
UT1=UTC +/-DUT1

In the first case, we need to introduce a new
distinction of time scales (terminology)

In the second case, need to vet as Y2K (0.9s)



What needs to change?

Algorithms have to accommodate changes

New infrastructure to supply UT1 and/or
DUT1

Requirement for leap second table never
vanishes, code gets “spaghettier”

Documentation would become more complex
and contradictory (or worse yet, not change)

Revised data and metadata definitions



Systems assuming UTC = UT

Would need to do at least one of:

1. be rewritten to distinguish between two
separate meanings of “Universal Time”

2. be isolated to receive a vetted UT1
Input (or UT1-like input)

3. be retired and/or replaced



Systems with UT1 = UTC + DUT1

Software and systems making a DUT1
correction would need these steps:

4. be vetted for proper operation under
values of DUT1 > +0.9s, and

5. be isolated to receive a vouched DUT1
input, likely from a new source



Classes of astronomical software

* Extremely diverse

* A few examples:
— Observing preparation tools
— Astrometry & catalogs
— Telescope control
— Instrument control
— Data handling
— Data transport



Classes of astronomical software,

* More examples:
— Archives
— Pipeline processing
— Virtual Observatory / Astro-informatics
— Time domain astronomy / transient alerts
— Robotic follow-up
— Desktop data reduction & analysis
— more...




Justifying a UTC inventory

Proponents of redefining UTC make assertions:
1. the affected codebase is small, and

2. thereis also a cost for issuing leap seconds



Performing a UTC inventory

Each is an argument for a coherent inventory:

— |s the range of affected software systems small?
Then it should be easy to complete an inventory.

* Or perhaps the inventory would be larger than imagined?

— |s there a cost for leap seconds?
Then this should form part of the inventory.

* Or would the cost for leap seconds be found to be negligible?



UTC remediation would include

Consistent local and community-wide
planning

An inventory of dependencies

— For Y2K was basically “19”, “year” and “century”

— For UTC, varies and is subtle and more involved

Resources

— For Y2k was fraction of several NOAO staff for
three years, ~ 1.5 - 2.0 FTE-years

— For UTC would be significantly more
New clocks and netweork.infrastructure



UTC search terms

* The search terms will vary with software package

* For IRAF, an initial inventory was performed with
these terms, roughly in descending order of
efficiency in generating good hits:

— UT, UTC, GMT, JD, MJD, DUT, LST
— Hour, minute, second

— Year, month, day

— Solar, sidereal

— Clock, calendar



UTC search terms, cont.

 Other terms are too general
— Date, time

* And others simply do not appear
— Leap second
— Intercalary

* Will vary for other packages and SW types



UTC inventory for IRAF

uT 250 Day 156

UTC
GMT
JD
MJD
LST
Second
Minute

Hour

5 January 2014

23 Month
38 Year
158 Sidereal
63 Solar
67 Calendar
857 Clock
66
145 Total

Performing your UTC software inventory

68
100
20
65
10
73

1312 (of 11,600)

29



UTC comparison to Y2K

1,312 /11,600 =11%
— UTC tally excludes documentation

— Also excludes the external packages

— Each file counted only once

 The IRAF Y2K tally was 124 files (including
documentation), less than 1%

* |[RAF UTC remediation would be a larger,
longer term, more expensive project



Then what?

A good hit is a file with a plausible connection to
timekeeping (most of these are plausible)

With Y2K the search terms resulted in a short list
of hits with a high yield of needed changes

The ultimate goal is to identify all files requiring
mitigation, without fail

For scientific code this requires human review to
comprehend the intent of the methods /
algorithms (vs recognizing 2-digit structures)

data formats, data structures, interfaces
documentation



Big impact on astronomers

Our software is the canary in the coalmine for
this issue

Not a zero-sum trade-off — past leap seconds
remain to be dealt with

Large cost to the community simply to
perform the necessary inventory

No significant benefit to us from ceasing leap
seconds



