# Time Scales and Concepts 

## Arnold Rots Smithsonian Astrophysical Observatory

## Concepts

Clocks, Calendars, Chronometers: Measuring Time Units of Time<br>Calendars<br>Expressing Date and Time

## Clocks, Calendars, and Chronometers:

 How do we measure time?- Clock: daily cycle
- Based on earth rotation - an angle measurement
- Days are getting longer: ~2 ms per cy
- Civil and astrometric significance
- Calendar: annual cycle
- Year (defined by vernal equinox) is getting shorter: $0.8 \mathrm{~s} / \mathrm{cy}$
- Astrometric applications
- Chronometer: elapsed time
- Using SI second


## Units of Time (since $19^{\text {th }}$ century)

- Astrometric definitions
- Tropical year (defined by vernal equinox; cubic)
- Besselian year (defined by solar longitude $280^{\circ}$; linear)
- Both are time-variable
- Need for a chronometer-quality standard of the second
- Before 1967 the second was $1 / 31,556,925.9747$ of the tropical year for 1900 January o at 12 h Ephemeris Time
- Cumbersome to maintain, limited accuracy
- SI second
- Based on ${ }^{133}$ Cs hyperfine transition


## Calendars

- The year expressed in unit of day
- The calendar wants a integer number of days
- Unfortunately, earth orbit and rotation are not perfectly synchronized
- Solution: leap days
- First attempt (Julian calendar) worked for a while
- Second attempt (Gregorian calendar, 1582) will be good for several thousands of years
- Only requires an accuracy of order $10^{-6}$ over that range


## Expressing Date \& Time

- ISO-86o1:
- Julian Day (JD):
- Modified Julian Day (MJD): 56658.0
- Besselian epoch:
- Julian epoch:
- Julian century: 36525 days of 86400 s


## Time Scales

Empirically Measured Time Scales UTC<br>Earth-based Time Scales<br>TDB<br>Relativistic Issues, Coordinate Time<br>Time Scales Summary<br>Closing Comments

## Time Scales: Empirically Measured

- UTı: Universal Time
- Clock time scale
- Angle measurement of earth rotation
- TAI: International Atomic Time
- Chronometer time scale
- Ensemble of atomic clocks
- Based on SI second
- Measured on surface of the rotating geoid
- Problem: both are determined after the fact


## UTC

- Bridge between the clocks and the chronometers
- Real-time distribution, based on a realization of TAI
- This introduces uncertainty that is typically of order 5 ns
- Within 0.9 s of UT1
- Offset by integer number of seconds from TAI
- Leap seconds as needed at end of June or December
- Under IERS authority
- Published 6 months ahead of time
- $10^{-8}$ accuracy only lasts a few years


## Earth-based Time Scales

- ET: Ephemeris Time
- Prior to 1967
- TT: Terrestrial Time
- Official IAU time; on the rotating geoid; continues ET
- TAI: International Atomic Time
- TT - TAI $=32.184 \mathrm{~s}$
- UTi; Universal Time
- Represents earth rotation
- UTC: Universal Time Coordinated; GMT
- Distributed time, with leap seconds; currently 35 s behind TAI
- Within 0.9 s of UTi; links clocks and chronometers
- GPS: GPS’s Time Scale
- TAI - GPS = 19 s


## Barycentric Dynamical Time

- Needed for astronomical purposes to remove effects related to the earth's orbit
- TDB runs on average at same rate as TT, but corrected for eccentricity of earth orbit ( $<2 \mathrm{~ms}$ )
- In addition, barycentric conversion usually requires corrections for:
- Geometric path length delay (< 500 s )
- Shapiro delay (< 0.2 ms )
- Römer delay (typically < 0.1 ms )


## Time Scales Realization



## Relativistic Trouble

- SI second:
- 9,192,631,770 cycles of radiation due to transition between two hyperfine levels of ${ }^{133} \mathrm{Cs}$
- Clock at lower gravitational potential speeds up, clock in motion slows down
- A clock in LEO would lose 8.5 ms per year, but in LEO people don't bother, just synchronize
- TDB-TT corrects for the eccentricity of the earth's orbit only: the variation it causes in earth motion and gravitational potential


## Real Relativistic Trouble

- But having a clock run synchronously with TT at the barycenter (as TDB does) has nasty consequences: it's seconds don't correspond anymore to 9,192,631,770 ${ }^{133} \mathrm{Cs}$ cycles; i.e., fundamental physical constants change
- Solution: Coordinate Time
- TCG - faster than TT by $6.969290134 \times 10^{-10}$
- TCB - faster than TDB by $1.550505 \times 10^{-8}$
- Both synchronized with TT and TDB at 1977.0 (UTC)


## Practical Time Scales Model

Terrestrial
Barycentric
Coordinate time



## Some Random Closing Comments

- A time scale for any location in the solar system: derive from TCB, similar to TCG
- It's helpful to have a location attached to time stamps: geocenter, barycenter, topocenter,...
- ISO-8601, JD, MJD do NOT imply a time scale: it needs to be specified explicitly
- DO NOT use incompatible locations and time scales: like UTC/barycenter or TDB/geocenter
- DO NOT use JD or MJD to express UTC: the UTC day is not guaranteed to be 86400 s
- Preferred time scales for astronomical applications:

TT \& TDB or TCG \& TCB

- FITS and IVOA have (or will have) recognized standards that include these time scales


## Salvador Dali knew time is a tricky subject



