Time Scales in Astronomical and Navigational Almanacs

George H. Kaplan, Ph.D.

Colora, MD http://gkaplan.us President, IAU Commission 4 (Ephemerides)

2011 October 5

<u>Ephemeris</u>: A table or data file giving the calculated coordinates of a celestial body as a function of time. Plural: ephemerides.

What is IAU Commission 4 (Ephemerides)?

Commission 4 (Ephemerides) of the International Astronomical Union (IAU) includes astronomers responsible for the production of printed almanacs, software, and web services that provide basic data on the positions and motions of celestial objects, and the times of phenomena such as rise and set, eclipses, phases of the Moon, etc.

IAU Commission 4 encompasses two kinds of work:

• Computing fundamental solar system ephemerides

Using gravitational theory (including General Relativity) along with a wide variety of observations (optical, laser, radar, spacecraft) to determine the orbits of solar system bodies in a well-defined 4-D reference system. This work now depends almost exclusively on N-body numerical integrations and least-squares fits to the observations.

Computing and distributing almanac data

Using the fundamental solar system ephemerides to produce astronomical information useful to observers and navigators — the positions and motions of celestial objects as seen from Earth, and the times of phenomena such as rise and set, eclipses, phases of the Moon, etc.

- One of 40 subject-area commissions making up the International Astronomical Union
- One of six commissions in IAU Division I, Fundamental Astronomy:
 - Commission 4 Ephemerides
 - Commission 7 Celestial Mechanics & Dynamical Astronomy
 - Commission 8 Astrometry
 - Commission 19 Rotation of the Earth
 - Commission 31 Time
 - Commission 52 Relativity in Fundamental Astronomy

Plus five division or inter-division working groups

- Our mission statement ("terms of reference"):
 - Maintain cooperation and collaboration between the national offices providing ephemerides.
 - Encourage agreement on the bases (reference systems, time scales, models, and constants) of astronomical ephemerides and reference data.
 - Maintain databases containing observations of all types on which the ephemerides are based.
 - Encourage the development of software and web sites that provide astronomical ephemerides and prediction of phenomena.
 - Promote the development of explanatory material that fosters better understanding of the use and bases of ephemerides and related data.

• Institutions Involved:

- Jet Propulsion Laboratory (JPL) US
- ▶ U.S. Naval Observatory (USNO) US
- Her Majesty's Nautical Almanac Office (HMNAO) UK
- National Astronomical Observatory of Japan (NAOJ)
- Institut de Mecanique Celeste et de Calcul des Ephemerides (IMCCE) — France
- Institute of Applied Astronomy (IAA) Russia
- Spanish Naval Observatory
- ► Astronomical Institute, Prague Czech Republic

From web service provided by IMCCE:

Planet 2 Venus Planetary theory INPOP10 Apparent coordinates (true equator; equinoxe of the date) Frame center: geocenter Relativistic perturbations, coordinate system 0 Equatorial coordinates (R.A, Dec.)

		Date 1	т				R.A		Dec. Distance V.Mag Phase Ele			Elong.	long. muRAcosDE		Dist dot			
		h	m	S	h	m	l S	0	'	"	au.			0	0	"/s	"/s	km/s
10	5	2011 0	0	0.00	13	32	49.1138	5 - 08	48	53.7535	1.658916	553 -3	. 90 :	18.61	13.50	0.477E-01	-0.202E-01	-4.5267
10	5	2011 6	0	0.00	13	33	58.6751	8 - 08	56	10.2049	1.658261	626 -3	.90 :	18.70	13.56	0.477E-01	-0.202E-01	-4.5448
10	5	2011 12	0	0.00	13	35	8.2806	3 -09	3	25.9160	1.657604	085 -3	.90 :	18.79	13.63	0.477E-01	-0.202E-01	-4.5629
10	5	2011 18	0	0.00	13	36	17.9309	-09	10	40.8746	1.656943	939 -3.	.90 :	18.88	13.69	0.478E-01	-0.201E-01	-4.5809
10	6	2011 0	0	0.00	13	37	27.6265	5 -09	17	55.0687	1.656281	196 -3	.90 1	18.97	13.75	0.478E-01	-0.201E-01	-4.5988
10	6	2011 6	0	0.00	13	38	37.3680	-09	25	8.4865	1.655615	865 -3	.90 :	19.05	13.82	0.478E-01	-0.200E-01	-4.6167
10	6	2011 12	0	0.00	13	39	47.1561	7 -09	32	21.1158	1.654947	955 -3	.90 :	19.14	13.88	0.478E-01	-0.200E-01	-4.6346
10	6	2011 18	0	0.00	13	40	56.9913	-09	39	32.9447	1.654277	472 -3	.90 :	19.23	13.95	0.478E-01	-0.200E-01	-4.6524
10	7	2011 0	0	0.00	13	42	6.8742	2 -09	46	43.9612	1.653604	426 -3	.90 :	19.32	14.01	0.478E-01	-0.199E-01	-4.6701
10	7	2011 6	0	0.00	13	43	16.8053	7 -09	53	54.1534	1.652928	825 -3	.90 :	19.41	14.07	0.479E-01	-0.199E-01	-4.6878
10	7	2011 12	0	0.00	13	44	26.7853	-10	1	3.5091	1.652250	675 -3	.90 1	19.50	14.14	0.479E-01	-0.199E-01	-4.7054
10	7	2011 18	0	0.00	13	45	36.8148	5 -10	8	12.0165	1.651569	986 -3.	.90 1	19.58	14.20	0.479E-01	-0.198E-01	-4.7229
10	8	2011 0	0	0.00	13	46	46.8943	-10	15	19.6636	1.650886	764 -3	.90 1	19.67	14.26	0.479E-01	-0.198E-01	-4.7404
10	8	2011 6	0	0.00	13	47	57.0244	-10	22	26.4384	1.650201	017 -3	.90 :	19.76	14.33	0.479E-01	-0.197E-01	-4.7579
10	8	2011 12	0	0.00	13	49	7.2057	3 -10	29	32.3288	1.649512	753 -3	.90 :	19.85	14.39	0.479E-01	-0.197E-01	-4.7753
10	8	2011 18	0	0.00	13	50	17.4387	3 -10	36	37.3229	1.648821	979 -3.	.90 :	19.94	14.46	0.480E-01	-0.197E-01	-4.7927
10	9	2011 0	0	0.00	13	51	27.7241	3 -10	43	41.4087	1.648128	701 -3	.90 2	20.02	14.52	0.480E-01	-0.196E-01	-4.8100
10	9	2011 6	0	0.00	13	52	38.0624	3 -10	50	44.5742	1.647432	926 -3.	.90 2	20.11	14.58	0.480E-01	-0.196E-01	-4.8273
10	9	2011 12	0	0.00	13	53	48.4542	5 -10	57	46.8074	1.646734	663 -3	.90 2	20.20	14.65	0.480E-01	-0.195E-01	-4.8445
10	9	2011 18	0	0.00	13	54	58.9000	-11	4	48.0963	1.646033	917 -3	.90 2	20.29	14.71	0.480E-01	-0.195E-01	-4.8616

From The Nautical Almanac (USNO & HMNAO):

2010 FEBRUARY 6, 7, 8 (SAT., SUN., MON.)

UT	ARIES	VENUS -3.9	MARS -1.2	JUPITER -2.0	SATURN +0.7	STARS
d 1 600 02 02 02 02	GHA o ' 136 01.5 151 04.0 166 06.4 181 08.9 196 11.4 211 13.8	GHA Dec 0 / 0 170 06.9 S15 08.5 185 06.3 07.4 00 200 05.7 06.4 05.1 0.54 215 05.1 . 05.4 03.0 04.4 230 04.5 04.4 245 03.9 03.4	GHA Dec ° / ° / 5 24.6 N22 53.2 20 28.1 53.4 35 31.5 53.6 50 35.0 53.9 65 38.4 54.1 80 41.9 54.3	GHA Dec 0 / 0 159 27.6 S10 46.4 174 29.5 46.2 48.9 189 31.4 46.0 204 33.3 . 45.8 219 35.2 45.6 234 37.1 45.3	GHA Dec 0 / 0 35.7 326 16.1 35.8 341 18.6 35.8 341 18.6 35.8 35.9 11 23.8 35.9 26 26.3 36.0 36.0 36.0 36.0	Name SHA Dec Acamar 315 20.1 S40 16.0 Achernar 335 28.6 S57 11.3 Acrux 173 11.8 S63 09.2 Adhara 255 14.1 S28 59.3 Aldebaran 290 52.0 N16 31.8
00 S 08 A 09 T 10 U 11	226 16.3 241 18.8 256 21.2 271 23.7 286 26.2 301 28.6	26003.3\$1502.427502.701.429002.01500.430501.41459.432000.858.433500.257.3	95 45.4 N22 54.5 110 48.8 54.8 125 52.3 55.0 140 55.7 . 55.2 155 59.2 55.4 171 02.6 55.6	24939.0\$1045.126440.944.927942.944.729444.8.44.530946.744.332448.644.1	41 28.9 N 0 36.0 56 31.4 36.1 71 34.0 36.1 86 36.5 . 36.2 101 39.1 36.2 116 41.6 36.3	Alioth 166 22.3 N55 53.9 Alkaid 153 00.5 N49 15.4 Al Na'ir 27 47.1 S46 54.8 Alnilam 275 48.6 S 1 1.8 Alphard 217 58.2 S 8 42.3
R 12 D 12 A 14 Y 16 17	316 31.1 331 33.6 346 36.0 1 38.5 16 40.9 31 43.4	349 59.6 S14 56.3 4 59.0 55.3 19 58.4 54.3 34 57.8 . 53.3 49 57.2 52.3 64 56.6 51.2	186 06.1 N22 55.9 201 09.5 56.1 216 13.0 56.3 231 16.4 . 56.5 246 19.9 56.7 261 23.3 56.9	339 50.5 \$10 43.8 354 52.4 43.6 9 54.3 43.4 24 56.2 . 43.2 39 58.1 43.0 55 00.0 42.8	131 44.2 N 0 36.3 146 46.7 36.4 161 49.3 36.4 176 51.9 . 36.5 191 54.4 36.5 206 57.0 36.6	Alphecca12613.1N2640.5Alpheratz35746.3N2908.9Altair6210.9N853.6Ankaa35318.3S4215.2Antares11229.4S2627.3
18 19 20 21 22 22	46 45.9 61 48.3 76 50.8 91 53.3 106 55.7 121 58.2	79 56.0 S14 50.2 94 55.4 49.2 109 54.8 48.2 124 54.2 . 47.2 139 53.6 46.1 154 53.0 45.1	27626.7N2257.229130.257.430633.657.632137.1.57.833640.558.035144.058.2	70 01.9 S10 42.5 85 03.8 42.3 100 05.7 42.1 115 07.6 . 41.9 130 09.5 41.7 145 11.4 41.5	221 59.5 N 0 36.6 237 02.1 36.7 36.7 252 04.6 36.7 36.8 267 07.2 . 36.8 282 09.7 36.8 297 12.3 36.9	Arcturus 145 57.8 N19 07.5 Atria 107 33.8 S69 02.5 Avior 234 18.5 S59 32.7 Bellatrix 278 34.4 N 6 21.5 Betelgeuse 271 03.7 N 7 24.5
7 00 02 02 04 04	137 00.7 152 03.1 167 05.6 182 08.1 197 10.5 212 13.0	169 52.4 \$14 44.1 184 51.8 43.1 199 51.2 42.1 214 50.6 . 41.0 229 50.0 40.0 244 49.4 39.0	6 47.4 N22 58.5 21 50.8 58.7 36 54.3 58.9 51 57.7 . 59.1 67 01.2 59.3 82 04.6 59.5	160 13.3 \$10 41.3 175 15.2 41.0 190 17.1 40.8 205 19.0 . 40.6 220 20.9 40.4 235 22.8 40.2	312 14.9 N 0 36.9 327 17.4 37.0 342 20.0 37.0 357 22.5 . 37.1 12 25.1 37.1 27 27.6 37.2	Canopus Capella26356.8S5242.328037.8N4600.6Deneb4933.7N4518.9Denebola18235.8N1430.7Diphda34858.5S1755.9
00 07 08 08 09 U 10 N 17	227 15.4 242 17.9 257 20.4 272 22.8 287 25.3 302 27.8	25948.8\$1438.027448.236.928947.635.930447.0.34.931946.433.833445.832.8	97 08.0 N22 59.7 112 11.5 22 59.9 127 14.9 23 00.2 142 18.4 . 00.4 157 21.8 00.6 172 25.2 00.8	25024.7\$1040.026526.639.728028.539.529530.4.39.331032.339.132534.338.9	42 30.2 N 0 37.2 57 32.7 37.3 72 35.3 37.3 87 37.9 . 37.4 102 40.4 37.4 117 43.0 37.5	Dubhe 193 53.8 N61 41.5 Elnath 278 15.5 N28 37.0 Eltanin 90 47.6 N51 29.0 Enif 33 49.8 N 9 55.3 Fomalhaut 15 26.9 S29 34.2
D 12 A 13 Y 14 19 10	317 30.2 332 32.7 347 35.2 2 37.6 17 40.1 32 42.6	349 45.2 \$14 \$1.8 4 44.7 \$0.7 19 44.1 \$29.7 34 43.5 \$28.7 49 42.9 \$27.6 64 42.3 \$26.6	187 28.7 N23 01.0 202 32.1 01.2 217 35.5 01.4 232 39.0 . 01.6 247 42.4 01.8 262 45.8 02.0	340 36.2 \$10 38.7 355 38.1 38.4 10 40.0 38.2 25 41.9 . 38.0 40 43.8 37.8 55 45.7 37.6	132 45.5 N 0 37.5 147 48.1 37.6 162 50.7 37.6 177 53.2 . 37.7 192 55.8 37.7 207 58.3 37.8	Gacrux 172 0.3.4 S57 10.1 Gienah 175 54.6 S17 36.0 Hadar 148 51.4 S60 25.2 Hamal 328 03.6 N23 30.7 Kaus Aust. 83 47.3 S34 22.7
18 19	47 45.0 62 47.5	79 41.7 S14 25.6 94 41.1 24.5	277 49.3 N23 02.2 292 52.7 02.4	70 47.6 S10 37.4 85 49.5 37.1	223 00.9 N 0 37.8 238 03.4 37.9	Kochab 137 19.5 N74 06.4 Markab 13 41.1 N15 15.6

From HMNAO web site:

From The Astronomical Almanac (HMNAO & USNO):

C18

SUN, 2011

Date	Julian Date	Geometric Eclipti Mn Equinox & Eclip Longitude	c Coords. ptic of Date Latitude	Apparent R. A.	Apparent Declination	True Geocentric Distance	
		Longitude					
	245	0 / //	//	h m s	0 / //	au	
Oct. 1	5835.5	187 28 38.35	-0.11	12 27 27.71	- 2 57 59.5	1.001 4051	
2	5836.5	188 27 38.26	+0.02	12 31 04.90	- 3 21 15.9	1.001 1130	
3	5837.5	189 26 39.91	+0.16	12 34 42.38	- 3 44 30.0	1.000 8198	
4	5838.5	190 25 43.29	+0.30	12 38 20.15	- 4 07 41.4	1.000 5260	
5	5839.5	191 24 48.41	+0.42	12 41 58.23	- 4 30 49.8	1.000 2319	
6	5940 5	102 22 55 20	+0.52	12 45 36 65	- 1 53 547	0 000 0370	
0	5840.5	192 23 33.29	+0.52	12 49 50.05	- 5 16 560	0.999 6444	
/	5842.5	195 25 05.95	+0.01	12 49 15.45	-530531	0.000 3516	
0	5942.5	194 22 14.43	+0.07	12 52 54.59	6 02 45 8	0.000 0508	
9	5045.5	195 21 20.77	+0.70	12 30 34.10	6 25 33 8	0.008 7603	
10	3644.3	190 20 41.00	+0.71	15 00 14.14	- 0 25 55.8	0.998 7095	
11	5845.5	197 19 57.18	+0.69	13 03 54.58	- 6 48 16.6	0.998 4802	
12	5846.5	198 19 15.35	+0.64	13 07 35.49	- 7 10 54.0	0.998 1927	
13	5847.5	199 18 35.56	+0.57	13 11 16.89	- 7 33 25.5	0.997 9069	
14	5848.5	200 17 57.86	+0.48	13 14 58.80	- 7 55 50.9	0.997 6228	
15	5849.5	201 17 22.29	+0.37	13 18 41.26	- 8 18 09.8	0.997 3405	
16	5950 5	202 16 49 90	10.26	12 22 24 27	8 40 21 8	0.007.0600	
10	5850.5	202 16 48.89	+0.20	13 22 24.27	- 8 40 21.8	0.997 0000	
17	5851.5	203 10 17./1	+0.14	13 20 07.80	- 9 02 20.5	0.990 7812	
18	5852.5	204 15 48.78	+0.01	13 29 32.05	- 9 24 23.3	0.990 3041	
19	5853.5	205 15 22.11	-0.10	13 33 30.86	- 9 40 12.5	0.990 2283	
20	5854.5	206 14 57.75	-0.20	13 37 22.30	-10 07 53.1	0.995 9543	

FOR 0^h TERRESTRIAL TIME

From the Japanese Nautical Almanac (JHOD) :

2011			10	月,	4 日	月齢 d Age 6.5	277
۲	太	陽	P 惑	星	P.P.	《月 正中時 h m Tr. 18 28	P.P.
$U E_{\odot}$	d	$d \circ \mathbf{P.P.}$	$U E_{P}$	d	$E_{P} d$	IT E. d	E.d.
h h m s 0 12 11 02 2 12 11 03 4 12 11 05 6 12 11 06 8 12 11 08	$ \begin{smallmatrix} \circ & 4 \\ S & 4 & 07.7 \\ S & 4 & 09.6 \\ S & 4 & 11.6 \\ S & 4 & 13.5 \\ S & 4 & 15.4 \\ \end{smallmatrix} $	h m ' 0 00 0.0 10 0.2 20 0.3 30 0.5 40 0.6	P S h h m s 0 11 21 11	金星 。, s 8 19.7	正中時 h m Tr. 12 39 h m s , 0 00 0 0.0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	m s ' 1 2 0.1 2 4 0.2 3 6 0.3 4 9 0.4
10 12 11 09 12 12 11 11 14 12 11 13 16 12 11 14 18 12 11 16	S 4 17.4 S 4 19.3 S 4 21.2 S 4 23.1 S 4 25.1	0 50 0.8 1 00 1.0 10 1.1 20 1.3 30 1.4	2 11 21 07 4 11 21 04 6 11 21 00 8 11 20 57 10 11 20 53	S 8 22.1 S 8 24.6 S 8 27.0 S 8 29.5 S 8 31.9	10 0 0.2 20 1 0.4 30 1 0.6 40 1 0.8 0 50 1 1.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 11 0.5 6 13 0.6 7 15 0.6 8 17 0.7 9 19 0.8 10 22 0.9
20 12 11 17 22 12 11 19 24 12 11 20	S 4 27.0 S 4 28.9 S 4 30.8	40 1.6 1 50 1.8 2 00 1.9	12 11 20 50 14 11 20 47 16 11 20 43 18 11 20 40 20 11 20 36 23 11 20 32	S 8 34.3 S 8 36.8 S 8 39.2 S 8 41.6 S 8 44.1	1 00 2 1.2 10 2 1.4 20 2 1.6 30 3 1.8 40 3 2.0 1 50 2 2.2	5 6 00 52 S20 49.1 S20 46.4 S20 57.4 S20	11 24 1.0 12 26 1.1 13 28 1.2 14 30 1.3 15 32 1.4
weight No.	$\frac{E_{E_*}^{U}}{E_*^U}$	■ 0 ^h の値 ↓ d	24 11 20 29	<u>5 8 40.5</u> <u>5 8 48.9</u> 大星	2 00 3 2.4 正中時 h m.	6 5 58 43 S20 43.6 5 57 38 S20 40.8 7 5 56 34 S20 38.0 5 55 29 S20 35.2	16 34 1.5 17 37 1.6 18 39 1.7 19 41 1.8
1 Polaris 2 Kochab 3 Dubhe 4 β Cassiop 5 Merak	$\begin{array}{c} h & m & s \\ 22 & 01 & 23 \\ 9 & 58 & 45 \\ 13 & 44 & 57 \\ 0 & 0 & 39 & 30 \\ 13 & 46 & 50 \end{array}$	N89 18.8 N74 06.6 N61 41.1 N59 13.1 N56 19.0	h h m s 0 16 02 27 2 16 02 35 4 16 02 42 6 16 02 50	N19 08.2 N19 07.5 N19 06.8 N19 06.1	h m s / 0 00 0 0.0 10 1 0.1 20 1 0.1 30 2 0.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20 43 1.8 21 45 1.9 22 47 2.0 23 49 2.1 24 52 2.2 25 54 2.3 26 56 2.4
 6 Alioth 7 Schedir 8 Mizar 9 α Persei 10 Benetnase 	11 54 51 0 08 08 11 25 00 21 24 09 2h 11 01 23	N55 53.8 N56 36.3 N54 51.9 N49 54.1 N49 15.4	8 16 02 58 10 16 03 05 12 16 03 13 14 16 03 21	N19 05.4 N19 04.6 N19 03.9 N19 03.2	40 3 0.2 0 50 3 0.3 1 00 4 0.4 10 4 0.4	5 46 58 S20 11.5 H.P. 57.1 S.D. 15 34	27 58 2.5 28 60 2.6 29 62 2.7 30 65 2.8
11 Capella 12 Deneb 13 Vega 14 Castor 15 Alpheratz	19 31 46 4 07 30 6 12 01 17 14 00 z 0 40 20	N46 00.4 N45 19.7 N38 48.1 N31 51.6 N29 09.6	16 16 03 28 18 16 03 36 20 16 03 44 22 16 03 51 24 16 03 59	N19 02.5 N19 01.8 N19 01.1 N19 00.4 N18 59.7	20 5 0.5 30 6 0.5 40 6 0.6 1 50 7 0.7 2 00 8 0.7		m s / 1 2 0.1 2 4 0.2 3 6 0.3 4 8 0.5 5 10 0.6

Example of Old Almanac Data

IQEE

00 -

From the first American Ephemeris and Nautical Almanac (US NAO) :

MADO

DECEMBER.								NOVEMBER.							
е.	TIM	AN	H MI	NWIG	· GREE	Tonth.	GREENWICH MEAN TIME.								
Meridian Passage.	Var of Dec. for 1 hour.	ent tion.	Appare Declina	Var. of R.A. for 1 hour.	Apparent Right Ascension.	Day of the D	Meridian Passage,	Var.of Dec. for 1 hour.	Apparent Declination.	Var. of R.A. for 1 hour.	Apparent Right Ascension.	lay of the l			
	Noon.	2.	Noor	Noon.	Noon.	_		Noon.	Noon.	Noon.	Noon.	F			
h. m.	11	h	0 1	в.	h. m. s.		h. m.		0 1 11	s.	h. m. s.				
18 59.	29.27	34.1	4 16	4.813	11 39 40.91	1	19 55.9	30.59	+10 20 0.0	5.432	1038 9.20	1			
18 56	29.15	53.1	4 4	.790	11 41 36.15	2	19 54.1	30.62	10 7 45.7	.412	10 40 19.32	2			
18 54.	29.02	15.0	3 53	.766	11 43 30.83	3	19 52.8	30.64	9 55 30.7	.392	10 42 28.96	3			
18 52	28.89	40.0	3 41	.743	11 45 24.95	4	19 50.5	30.66	9 43 15.4	.372	10 44 38.11	4			
18 50	28.75	8.3	3 30	.719	11 47 18.51	5	19 48.7	30.67	9 30 59.7	.352	10 46 46.80	5			
18 48	28.60	40.2	3 18	4.696	11 49 11.49	6	19 46.9	30.67	9 18 43.8	5.332	10 48 55.02	6			
18 46	28.45	15.7	3 7	.671	11 51 3.89	7	19 45.1	30.67	9 6 27.8	.312	1051 2.76	7			
18 44	28:29	54.9	2 55	.646	11 52 55.69	8	19 43.2	30.67	8 54 11.9	.292	105310.02	8			
18 42	28.13	37.9	2 44	.620	$11\ 54\ 46.88$	9	19 41.4	30.66	8 41 56.0	.271	10 55 16.79	9			
18 40	27.96	24.9	2 33	.595	11 56 37.47	10	19 39.5	30.65	8 29 40.3	.251	10 57 23.07	10			
18 38	27.79	16.0	2 22	4.570	11 58 27.44	11	19 37.6	30.63	8 17 25.0	5.231	10 59 28.86	11			
18 36.	27.61	11.2	2 11	.542	12 0 16.79	12	19 35.8	30.61	8 5 10.1	.211	11 1 34.16	12			
18 34	27.43	10.6	2 0	.515	12 2 5.49	13	19 33.9	30.58	7 52 55.8	.191	11 3 38.97	13			
18 31	27.25	14.5	1 49	.487	12 3 53.54	14	19 32.0	30.55	7 40 42.1	.170	11 5 43.29	14			
18 29	27.06	22.9	1 38	.460	12 540.92	15	19 30.1	30.51	7 28 29.3	.150	11 7 47.12	15			
18 27	26.87	35.9	1 27	4.432	12 7 27.63	16	19 28.2	30.47	7 16 17.5	5.130	11 9 50.48	16			
18 25.	26.67	58.6	1 16	.403	12 9 13.67	17	19 26.3	30.42	7 4 6.9	.109	11 11 53.34	17			
18 23.	26.47	16.1	1 6	.375	12 10 59.04	18	19 24.4	30.37	6 51 57.4	.089	11 13 55.70	18			
18 20.	26.26	43.5	0 55	.346	12 12 43.72	19	19 22.5	30.31	6 39 49.2	.068	11 15 57.57	19			
18 18.	26.04	16.1	0 45	.317	12 14 27.69	20	19 20.6	30.25	6 27 42.6	.048	11 17 58.96	20			

A Brief History of Time Scales

- Until 1930s Earth's rotation defines time (Greenwich Mean Time, Universal Time).
- 1930s Irregularities in Earth's rotation first definitively measured.
- 1950s "Ephemeris Time" (ET) established by IAU as a time scale for solar system ephemerides that are independent of the Earth's rotation.

First practical atomic clocks.

1960s

ightarrow

New high-precision observational techniques (radar, LLR, VLBI, spacecraft) require relativity in time scales and data analysis.

SI second defined, matching ET second.

A Brief History of Time Scales (cont.)

- 1972 UTC with 1s leap seconds, kept within 0.9 s of UT1, established.
 International Atomic Time (TAI) introduced.
 UTC and TAI both use the SI second.
- 1976, 1979 IAU splits ET into TDT and TDB (for geocentric and barycentric ephemerides, respectively).
- 1991-2006 IAU revisits relativistic basis of reference systems and times scales; establishes Terrestrial Time (TT), Geocentric Coordinate Time (TCG), Barycentric Coordinate Time (TCB), then redefines TT and TDB.

A Child's Garden of Time Scales

A Child's Garden of Time Scales

Time Scales from a User's Viewpoint

* Based on SI seconds on the geoid, not the barycenter

Differences Between Time Scales

From Seidelmann & Fukushima (1992) Astron. & Astrophys. 265, 833

Differences Between Time Scales if UTC is redefined

Time Scales Used in Modern Almanacs

(as the independent argument in the tabulations)

• UT1 (often labeled simply as UT or Universal Time).

- For data that depend on the rotation of the Earth (including the data fro celestial navigation).
- Also for data of public interest (times of Moon phases, solstices and equinoxes, etc.) that are not given to high precision.

• TT (Terrestrial Time).

- For data that are independent of the rotation of the Earth (e.g., geocentric celestial coordinates of the Sun, Moon, and planets).
- TDB (Barycentric Dynamical Time).
 - Less frequently used For heliocentric or barycentric data closely related to the fundamental solar system ephemerides (e.g., orbital elements of the planets).

Time Scales from a User's Viewpoint

the geoid, not the barycenter

The Universal Time Ambiguity

Many users can now assume UT1=UTC for their applications; they don't even have to know that there are two kinds of Universal Time.

UT1–UTC in seconds

Graph from Wikipedia

What if UTC is Redefined?

• Option 1: Do nothing.

- UTC is not used in the computation of ephemerides, nor is it used within the almanacs.
- It has always been the user's responsibility to convert from his own time scale (e.g., UTC) to the time scales used in the almanacs.
- ► However...
 - Many users are now able to assume UT1=UTC with negligible error for their applications (error in UT1 ≤ 0.9 s).
 - That approximation will no longer hold if leap seconds are discontinued from UTC, and the IERS value of UT1–UTC will have to be applied — more user education and very explicit instructions on this will be needed. "UT" tabulations would have to be re-labeled "UT1."

What if UTC is Redefined?

• Option 2: Switch to UTC-based tabulations.

- Not a problem for TT-based data, because UTC and TT would simply be a constant offset from each other (about 70 s), which would never change.
- UT1-based data that are printed would require predicting UT1–UTC from 2 to 2.5 years in the future. (IERS currently estimates this can be done to better than 0.1 s accuracy.)
 - Would still have to provide a correction table so the user can supply a better value of (UT1–UTC) close to the time the data is actually needed (if his accuracy requires it).
- UT1-based data that are provided online could be continually updated with better values of (UT1–UTC); for future data, could provide a prediction that the user could change.

Predicting UT1–UTC Into the Future

- IERS provides predictions in tabular form for one year • beyond current date.
- **IERS** projection beyond one year: \bullet

UT1-UTC = -0.3617 - 0.00073 (MJD - 55834) - (UT2-UT1)

with error

 $\sigma(t) = 0.00025 (MJD - 55826)^{0.75}$

which amounts to

- 0.012 s at 6 months 0.021 s at 1 year
- 0.035 s at 2 years
- 0.048 s at 3 years

Note: MJD 55826 is 2011 Sept 22 MJD 55834 is 2011 Sept 30

but these errors are undoubtedly underestimated.

Predicting UT1–UTC into the Future

Probably feasible with an error < 0.4 s for 2.5-year projection. This idea needs to be tested.

Excess LoD in milliseconds (= rate of UT1–TAI)

Outside of the annual term, LoD trend is mostly linear for several years at a time.

Graph from USNO EO Dept. web site

Conclusions

- This history of astronomical time scales is confusing and not always progressive.
- Most current users of astronomical and navigational almanacs have to deal with only two time scales: TT and UT.
- UT means UT1, but is deliberately ambiguous because for many users, UT1=UTC.
- If leap seconds are removed from UTC, the UT1=UTC assumption is no longer valid, leaving two choices:
 - Re-label "UT" as "UT1" and educate users about the conversion from UTC to UT1.
 - Change "UT" tabulations to be based on UTC, and use projected values of UT1–UTC to compute the data.

Time is what prevents everything from happening at once. — John Archibald Wheeler